

GENETIC ALGORITHM PARAMETERS OPTIMIZATION FOR ELECTROCHEMICAL MACHINING USING RESPONSE SURFACE METHODOLOGY

Vikas Kumar¹ & Dr. Ashwani Kumar Dhingra²

Abstract-In this paper, an attempt has been made for the judgment of the optimum parameters of GA for the optimization of Material Removal Rate (MRR) and the Surface Roughness (SR) simultaneously in Electro Chemical Machining (ECM) using Response Surface Methodology (RSM). Performance of GA can be achieved by optimization of its various parameters, i.e. creation function, crossover fraction, mutation function, population size etc. Fitness functions has been developed in GA for maximizing the MRR and minimization of SR. Combinational parameters of GA have been obtained by 5 levels central composite design approach of Response Surface Methodology (RSM) The optimization of the process parameter is primarily based on the working parameter used by the operator which is not possible that every time operator work on the optimum parameters. Due to this aspect GA optimization tool is required for effective utilization of the process. The main aim of this paper is to get the optimum GA parameters for maximizing the Material removal rate (MRR) and minimizing surface roughness (SR) for the Electro Chemical Machining (ECM) simultaneously.

Keywords-Electro Chemical Machining(ECM), Genetic algorithm , Regression model, Response surface methodology, Material Removal Rate(MRR), Surface Roughness (SR).

1. INTRODUCTION

Electrochemical machining (ECM) is one of the most broadly used nontraditional machining processes, which is used to machine extremely hard materials. ECM is a method of removing metal by electrochemical process.ECM has characterized as reverse electroplating and working on the principles of Faraday (1833).Faraday's law states that the mass of a metal distorted by the electrode is proportional to the quantity of electrical charges transferred to that electrode. A potential difference is maintained between electrodes as a result the ions existing in the electrolyte transfer toward the electrole. The desired amount of metal is removed because of ions movement towards the tool. In ECM the removal of metal is controlled by the anodic dissolution in the electrolyte. In ECM work piece act as anode and tool act as cathode. The electrolyte should be placed narrow in the gap of about 0.5 mm. The anode and cathode should be placed deep into the electrolyte. A genetic algorithm is used for optimizing the process parameters of the ECM machine. A genetic algorithm is a population based approach which is very effective in solving very hard problems like optimization of process parameters of various machines .GA is global , robust and anyone can apply it in such a situation where a little or a priori knowledge about the process and how to control it . Genetic algorithm normally starts with a preliminary population of chromosomes, which are randomly produced and based on several algorithms, other policies and Socratics.

Bhattacharyya et al (2005) highlighted various electrochemical micro-machining parameters like machining voltage, frequency, pulse period and electrolyte concentration and their influences on the Material Removal Rate (MRR), surface finish and accuracy in infinitesimal field. His study shows that 3V machining voltage, 20 g/l electrolyte concentration and 55 Hz frequency are optimal values of Electro chemical machining that can augment the accurateness with the uppermost possible amount of material removed (MRR). N. K. Jain et al (2007) concentrates his work on the optimization of tool feed rate, applied voltage, and electrolyte flow velocity with the purpose to minimize the geometrical inaccuracy subjected to choking, passivity constraint and temperatures. Via single objective real-coded genetic algorithms for obtaining the optimization process parameter of ECM machine after those optimum results were verified graphically and theoretically. His work shows that the optimum process parameters can extensively progress the process recital and progression economics by dropping operating, maintenance cost and tooling cost and manufacturing components of higher precision also try to extend

¹ Corresponding author Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharishi Dayanand University, Rohtak, Haryana (124001) India

² Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharishi Dayanand University, Rohtak, Haryana (124001) India

Genetic Algorithm Parameters Optimization For Electrochemical Machining Using Response Surface Methodology

306

tool life, machining cost and machining time by using suitable evolutionary algorithms. Dilip Datta et al (2010) applied a multi-objective GA to electrochemical machining for obtaining the optimum diverse process parameters by taking a tentative dataset for sculpting the problem through regression equation after that applied the genetic algorithm to linear model and an exponential model for obtaining the maximum MRR and minimizing the surface roughness (SR) simultaneously. Chinnamuthu Senthilkumar et al (2012) developed a second order polynomial arithmetical models for linking the interactive and higher-order of diverse machining parameters in the machining standard I.E. MRR and SR by using response surface methodology. They test models by ANOVA test. After that Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was applied to get the optimized process parameter for exploit material removal rate and diminish surface roughness. Optimized value attained through NSGA-II, is 5.020 µm and the consequent MRR is 0.831 gm/min and the pertinent constraints were, electrolyte flow rate, electrolyte concentration applied voltage and tool feed rate are 5 lit/min, 16 gm/lit, 15 volts and 1.0 mm/min correspondingly. Biswesh R. Acharya et al (2013) used a central composite design for response surface methodology to study the effect of 4 different constraints (current, flow rate of electrolyte, voltage, and inter-electro gap) on Material Removal rate (MRR) and Surface roughness (SR) of the hardened steel material on ECM machine and also they develop empirical equation for MRR and SR and tested for statistical study on four parameters of ECM machine. After that they use a non-dominated sorted genetic algorithm to find out the optimal process parameter that simultaneously maximizes MRR and minimize SR and the validation of optimum result can be done by doing electrochemical machining for the corresponding input parameters. A Giribabu et al (2014) used L27 orthogonal array and genetic algorithms for optimizing the machining parameters for electrochemical machining of Al/B4C composites in that they considered four main parameters applied voltage (electrical constraint), tool feed rate(electrode constraint), electrolyte concentration (electrolyte constraint) and reinforcement content (work piece property) as input machining constraints and also developed a regression models for Material removal Rate, Surface roughness and Radial Over Cut and then use that regression equation in genetic algorithms for getting the optimum machinating parameters to maximize Material removal rate(MRR), minimize Surface roughness(SR) and minimize Radial Over Cut (ROC) simultaneously. M. Sankar et al (2014) used response surface methodology (RSM) relevance to optimize the machining constraints with multiple response method in electrochemical machining (ECM) of a 7075Al/B4C metal matrix compound and after obtaining the optimum parameter the result was compared with ANOVA. The result what they obtain through after applied the response surface methodology (RSM) demonstrate that feed rate and voltage are the most considerable constraint which affect multiple machining responses concurrently and the responses in ECM can be improved successfully through this loom. The optimum results given by the experiment are as follows 8V voltage and 0.3mm/min feed rate and 217A current are most appropriate and momentous to achieve utmost surface finish with NaNO3 electrolyte solution. V. Sathiyamoorthy et al (2015) attempted to diminish the formation of spikes in the work piece of high carbon and high chromium die tool steel using nano particles of copper floating in plain NaNO3 electrolyte. They used Design expert 7.0 software to developed the mathematical models for getting the response like MRR and SR and after that multi-objective genetic algorithm in MATLAB was used for the best probable combination for accomplishing the maximum MRR and minimum SR. After comparing the result from design expert 7.0 to the optimum results obtained by using multi-objective genetic algorithm (MOGA) the conclusion come that the distinction from the predicted performance is less than 4% which verify the composite popularity of the developed models. Abhishek Tiwari et al (2015) done the optimization of ECM for EN 19 tool steel by using Non- dominated sorting Genetic Algorithm-II (NSGA-II) for maximizing the MRR and minimizing the SR. They prepared a mathematical model for correlating the input and output parameters and ANOVA test was done on that to show the concentrate- ion and feed rate was most dominating criteria for MRR and SR respectively. They also represent the optimal machine parameter for ECM machine through Non-dominated Sorting Genetic Algorithm-II (NSGA-II).

1.1 Problem statement

ECM is widely used in various industries. Quality and productivity of a product are highly considered. There are diverse parameters which affect the quality of the product and productivity .The MRR and SR are the prime response factors for higher productivity and good quality respectively. Improper combinational process parameters leads in productivity reduction and for the poor quality. So, we need to optimize the process parameters for maximizing the MRR and minimize the SR . Previously, research work has been done on optimizing the machine parameter for maximizing the MRR and minimizing the SR by using various mathematical and computational models. The ranges of the selected input parameters and regression equations the fitness function is created in GA for getting the values of MRR and SR.

MRR = -0.166 + 0.0272X1 + 0.027	0.424X2 + 0.00776X3 - 0.0284X4	(1)
SR = 5.04 + 0.0153X1 - 0.648X	X2 -0.0292X3 + 0.0551X4	(2)
And there limits are as follow		
Applied voltage	$12 \square Y1 \square 20$	(3)

$12 \square A1 \square 20$	(3)
$0.2 \square X2 \square 1$	(4)
$10 \Box X3 \Box 30$	(5)
$2.5 \ \Box X4 \ \Box 7.5$	(6)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2. METHODOLOGY

In GA every generation of the population goes throughout various progressions like encoding, Fitness function valuation selection, crossover and transformation. Genetic Algorithms work on the principles of natural genetics to evolve solutions of the problems .A Script fitness function is created in GA according to our requirement. When we execute this fitness function each set of the population represent a solution of the problem. Crossover & Mutation are used for producing new offsprings which are known as Reproduction operators. In this two Mutation function (Uniform and Adaptive feasible) and three crossover functions (Scattered, Single point and two points) are used for optimization. GA represents a novel programming pattern that attempts to copy the course of natural evolution, to resolve computing and optimization problems of computers. In GA, a population of chromosomes, which are generally twine of bits, is arbitrarily selected. This population further altered into a new population by a variety of natural selection based on the utilize of the operators encouraged by the natural genetic operatives.

The natural selection is fully based on the output of the function which is called fitness function. Only the best fit chromosomes are survived and permissible to further reproduce the new offsprings or we can say these are used in the next population. After exchanging the properties of two parents with each other and as a result of which two children created or making arbitrary changes to single parent by mutation. By replacing the present population with the children to structure the new generation. The algorithm end when the generation of a new population had completed.

The complete work is separated into two parts: first part is finds the maximum MRR and minimum SR simultaneously uses GA and the second part optimize the parameters of GA using Design expert. In this approx. 156 experiments were obtained by using 5 level central composite design approaches for Response surface methodology in design expert software are shown in Table 1.

Std	Ι	Run	Factor	r1	Factor2		Factor3	Factor4
Factor5	Respo	nse1	Response2 A:Popul	ation H	3:Crossover	C:Cr	eation	D:Mutation
E:Crossover	Ν	/IRR	SR		si70	fraction	function	function
function					SIZE	maction	Tunction	Tunction
16 3 889	1	20	0.9	Feasible p	opulation	Uniform	Scattered	0.68323
63	2	45	0.7	Uniform	Uniform	Single point	0.7174	3.894
2	3	70	0.4	Uniform	Uniform	Scattered	0.7242	3.8588
106	4	70	0.4	Uniform	Uniform	Two point	0.7328	3.8708
55	5	20	0.9	Uniform	Uniform	Single point	0.7222	3.9126
9	6	45	0.7	Uniform	Uniform	Scattered	0.6938	3.892
116	7	45	0.7	Uniform	Uniform	Two point	0.7348	3.8688
95	8	70	0.9	Feasible p	opulation	Adaptive fea	sible	Single point
0.743	3.8448			1	1	1		
13	9	45	0.7	Uniform	Uniform	Scattered	0.746	3.8282
86 3.882	10	45	1.0	Uniform	Adaptive	feasible	Single point	0.7288
77 3.7984	11	45	0.7	Feasible p	opulation	Uniform	Single point	0.7318
35	12	45	0.7	Uniform	Adaptive	feasible	Scattered	0.7424
1	13	20	0.4	Uniform	Uniform	Scattered	0.7122	3 9632
145	14	70	0.4	Feasible p	opulation	Adaptive fea	sible	Two point
0.746	3.8405			F	- F			- ··· · F - ····
30 3 8408	15	70	0.9	Uniform	Adaptive	feasible	Scattered	0.7458
141	16	45	0.7	Uniform	Adaptive	feasible	Two point	0.747
132	17	70	0.4	Uniform	Adaptive	feasible	Two point	0.7446
20 2875	18	45	0.3	Feasible p	opulation	Uniform	Scattered	0.7366
53	19	20	0.4	Uniform	Uniform	Single point	0.73	3.94

Table1: Y	Various	Parameters	Combina	tion Of	Ga By	Using	Design	Expert
I uoici.	v un roub	1 unumeters	Comonic	ulon OI	Ou Dy	Obling	DUSIGI	LAPUI

<u>Genetic Algori</u> Methodology	thm Parame	ters Optimizat	ion For Electr	ochemical Ma	achining Using	g Response Su	<u>urface</u>	308	
150	20	45	0.3	Feasible pop	oulation	Adaptive fea	sible	Two point	
0.746 71 2.8627	3.838 21	80	0.7	Feasible pop	oulation	Uniform	Single point	0.7284	
140 3 8394	22	45	0.7	Uniform	Adaptive fea	sible	Two point	0.7484	
130 3 895	23	45	0.7	Feasible pop	oulation	Uniform	Two point	0.7542	
112	24	45	1.0	Uniform	Uniform	Two point	0.7352	3.8824	
135 3.9342	25	10	0.7	Uniform	Adaptive fea	sible	Two point	0.741	
69 3.868	26	70	0.9	Feasible pop	oulation	Uniform	Single point	0.7308	
143 3.838	27	45	0.7	Uniform	Adaptive fea	sible	Two point	0.748	
111	28	45	0.3	Uniform	Uniform	Two point	0.7356	3.8514	
7	29	45	0.3	Uniform	Uniform	Scattered	0.71662	3 8642	
120	30	20	0.9	Feasible por	ulation	Uniform	Two point	0.6884	
3 0634	50	20	0.7	i casible pop	Julation	Childrin	i wo point	0.0004	
37	31	45	0.7	Uniform	Adaptive fea	sible	Scattered	0.746	
22	20	15	0.7	Equiple nor	ulation	Uniform	Saattarad	0 7242	41
23 61	32	45	0.7	Uniform	Uniform	Single point	0.7456	2 804	4.1
5	33 24	43	0.7			Single point	0.7430	3.094	
5	34	10	0.7	Uniform	Uniform	Scattered	0.67392	4.0304	
113	35	45	0.7	Uniform	Uniform	I wo point	0./158	3.894	
139 3.8394	36	45	0.7	Uniform	Adaptive fea	sible	Two point	0.7476	
134 3.8412	37	70	0.9	Uniform	Adaptive fea	sible	Two point	0.7438	
94 0.7428	38 3.8478	20	0.9	Feasible pop	oulation	Adaptive fea	sible	Single point	
19 3.864	39	80	0.7	Feasible pop	oulation	Uniform	Scattered	0.7326	
65	40	45	0.7	Uniform	Uniform	Single point	0.7352	3.8672	
40	41	20	0.4	Feasible pop	oulation	Adaptive fea	sible	Scattered	
0.746	3.9245 42	45	0.7	Feasible por	ulation	Adaptive fea	sible	Single point	
0.7404	3.8496	15	0.7	r cusible pop	Julution	nduptive rea	51010	biligie point	
41 0.746	43 3.837	70	0.4	Feasible pop	oulation	Adaptive fea	sible	Scattered	
22 3.91	44	45	0.7	Feasible pop	oulation	Uniform	Scattered	0.7358	
154 0.7458	45 3 84	45	0.7	Feasible pop	oulation	Adaptive fea	sible	Two point	
122	46	10	0.7	Feasible pop	oulation	Uniform	Two point	0.6798	
131 3 9536	47	20	0.4	Uniform	Adaptive fea	sible	Two point	0.7423	
78 3 8318	48	45	0.7	Feasible pop	oulation	Uniform	Single point	0.7304	
96 0 7034	49	10	0.7	Feasible pop	oulation	Adaptive fea	sible	Single point	
127	4.0048 50	45	0.7	Feasible pop	oulation	Uniform	Two point	0.7368	
5.0592	51	15	07	I Inifami	I Inifami	Cincle	0.7256	2 061	
04	51	45	0.7	Uniform Enacital	Uniform	Single point	0./330	5.801 Simel	
9/	52	80	0.7	reasible pop	outation	Adaptive fea	sible	Single point	
0.7446 149	3.8385 53	80	0.7	Feasible pop	oulation	Adaptive fea	sible	Two point	

Vikas Kumar & Dr. Ashwani Kumar Dhingra

0.746	3.837							
83	54	10	0.7	Uniform	Adaptive fea	sible	Single point	0.7204
3.9242								
89	55	45	0.7	Uniform	Adaptive fea	sible	Single point	0.7464
3.8384								
151	56	45	1.0	Feasible pop	ulation	Adaptive fea	sible	Two point
0.723	3.8856							
87	57	45	0.7	Uniform	Adaptive fea	sible	Single point	0.746
3.837								
59	58	45	0.3	Uniform	Uniform	Single point	0.7352	3.8608
155	59	45	0.7	Feasible pop	ulation	Adaptive fea	sible	Two point
0.74836	3.8424					-		-
124	60	45	0.3	Feasible pop	ulation	Uniform	Two point	0.7334
3.9002				1 1			1	
17	61	70	0.9	Feasible pop	ulation	Uniform	Scattered	0.7106
3.8986								
68	62	20	0.9	Feasible non	ulation	Uniform	Single point	0 7175
4 0256	02	20	0.9	r custore pop	ulution	Childrin	Single point	0.7170
25	63	45	07	Feasible non	ulation	Uniform	Scattered	0.7162
3 8022	05	-10	0.7	r custore pop	ulution	Childrin	Seattered	0.7102
104	64	45	07	Fossible pop	ulation	Adaptivo for	sible	Single point
0.746	3 8 3 7 8	45	0.7	reasible pop	ulation	Adaptive lea	ISIDIC	Single point
0.740	5.0570	70	0.0	Uniform	Adaptiva fac	aibla	Single point	0.742
02 2 9 1 C	03	70	0.9	Uniform	Adaptive lea	isible	Single point	0.745
3.840	~ ~	15	1.0	I I : £	A damting fra	-:!-1-	Trees a sint	0 7254
138	00	45	1.0	Uniform	Adaptive lea	Isible	I wo point	0.7254
3.8/94	7	4.5	07	F 11	1		.1 1	0.1
100	67	45	0.7	Feasible pop	ulation	Adaptive fea	sible	Single point
0.746	3.828							
107	68	20	0.9	Uniform	Uniform	Two point	0.7232	3.9248
156	69	45	0.7	Feasible pop	ulation	Adaptive fea	sible	Two point
0.7447	3.8466							
4	70	70	0.9	Uniform	Uniform	Scattered	0.7144	3.8382
91	71	45	0.7	Uniform	Adaptive fea	sible	Single point	0.746
3.838								
52	72	45	0.7	Feasible pop	ulation	Adaptive fea	sible	Scattered
0.7458	3.837							
98	73	45	0.3	Feasible pop	ulation	Adaptive fea	sible	Single point
0.745	3.84							
128	74	45	0.7	Feasible pop	ulation	Uniform	Two point	0.7306
3.8824							-	
42	75	20	0.9	Feasible pop	ulation	Adaptive fea	sible	Scattered
0.7452	3.8392			1 1		1		
75	76	45	0.7	Feasible pop	ulation	Uniform	Single point	0.7272
3.8796				1 1			01	
14	77	20	0.4	Feasible pop	ulation	Uniform	Scattered	0.7094
4.0256								
125	78	45	1.0	Feasible pop	ulation	Uniform	Two point	0.7268
3 8854			110	r custore pop	ununon	0	i no point	0.7200
85	79	45	03	Uniform	Adaptive fea	sible	Single point	0 7414
3 8532	.,	10	0.5	Children	riduptive ieu		single point	0.7 11 1
18	80	10	07	Feasible non	ulation	Uniform	Scattered	0 6748
10	00	10	0.7	r casible pop	ulation	Childrin	Scattered	0.0740
4.070	Q1	20	0.4	Fossible pop	ulation	Adaptivo for	sible	Single point
92	01 2 9006	20	0.4	reasible pop	ulation	Adaptive lea	ISIDIE	Single point
0.7558	3.8700 97	10	0.7	Equilate and	ulation	Uniform	Single	0 6002
10	02	10	0.7	reasible pop	ulation	Uniform	single point	0.0902
3.9002 117	02	15	0.7	I Inifami	I Inifami	True int	0.706	2 0266
11/	03	43 45	0.7	Uniform	Uniform	i wo point	0.700	5.9200
50	ð4 2.920	43	0.7	reasible pop	ulation	Adaptive fea	Isible	Scattered
0.748	3.838							

Genetic Algori	ithm Param	eters Optimiz	ation For Elect	rochemical Ma	achining Usin	g Response Si	urface	
<u>Methodology</u>								310
60	85	45	1.0	Uniform	Uniform	Single point	0.7145	3.889
24	86	45	0.7	Feasible por	oulation	Uniform	Scattered	0.709
3.9078		-						
47	87	45	1.0	Feasible por	oulation	Adaptive fea	sible	Scattered
0 7038	3.93	15	1.0	r custore por	Julution	riduptive ieu		Seatterea
6	2.75 99	80	07	Uniform	Uniform	Scattored	0 7271	3 8661
0	80	20	0.7	Esseihle ser		Julifa ma	0.7271	0.6079
00	89	20	0.4	Feasible pop	pulation	Uniform	Single point	0.0978
3.9388	00	4.5	1.0	T 11	1	XX : C	a : 1 • •	0.705
73	90	45	1.0	Feasible pop	pulation	Uniform	Single point	0.725
3.884								
48	91	45	0.7	Feasible pop	oulation	Adaptive fea	sible	Scattered
0.746	3.837							
51	92	45	0.7	Feasible pop	oulation	Adaptive fea	sible	Scattered
0.746	3.8492					-		
147	93	70	0.9	Feasible por	oulation	Adaptive fea	sible	Two point
0.746	3.838							I I I
115	94	45	07	Uniform	Uniform	Two point	0 737	3 8654
101	95	45	0.7	Eessible por	ulation	Adaptive fea	sible	Single point
0.746	2 9 2 7	ч 5	0.7	i casible pop	Julation	Adaptive rea	isibile	Single point
0.740	3.637	45	07	Esseihle see	1-4:	I I : £		0 724
70	90	43	0.7	reasible pop	pulation	Uniform	Single point	0.754
3.914		•	<u> </u>			** ••	-	
118	97	20	0.4	Feasible pop	pulation	Uniform	Two point	0.729
3.904								
142	98	45	0.7	Uniform	Adaptive fea	sible	Two point	0.7474
3.838								
46	99	45	0.3	Feasible pop	oulation	Adaptive fea	sible	Scattered
0.7455	3.838					-		
27	100	20	0.4	Uniform	Adaptive fea	sible	Scattered	0.7438
3.92	100		011	0	i ioupui to iou		Seattered	017 100
153	101	45	07	Feesible por	nulation	Adaptive fee	sible	Two point
0746	2 9 2 1	43	0.7	reasible pop	Julation	Adaptive lea	ISIDIC	i wo point
0.740	3.631	45	07	TT.: C.	11	C	0 (0)((2.0746
10	102	45	0.7	Uniform	Uniform	Scattered	0.0900	3.8/40
8	103	45	1.0	Uniform	Uniform	Scattered	0.7058	3.8858
81	104	20	0.9	Uniform	Adaptive fea	sible	Single point	0.7414
3.8532								
67	105	70	0.4	Feasible pop	oulation	Uniform	Single point	0.73942
3.8574								
57	106	10	0.7	Uniform	Uniform	Single point	0.6708	3.9548
121	107	70	0.9	Feasible pop	oulation	Uniform	Two point	0.7428
3.8512				1 1			1	
28	108	70	0.4	Uniform	Adaptive fea	sible	Scattered	0.748
3 842								
74	109	45	07	Feasible por	nulation	Uniform	Single point	0 7312
3 8808	109	15	0.7	r custote por	Julution	emiorm	Single point	0.7512
20	110	20	0.0	Uniform	Adaptiva for	sible	Scattored	0 7358
29592	110	20	0.9	UIIIUIII	Adaptive lea	151010	Scallereu	0.7558
3.8382	111	45	0.2	TT.: C.	A 1	. 1.1.	C	0746
33	111	45	0.3	Uniform	Adaptive rea	sible	Scattered	0.746
3.838								
108	112	70	0.9	Uniform	Uniform	Two point	0.7234	3.8918
103	113	45	0.7	Feasible pop	oulation	Adaptive fea	sible	Single point
0.744	3.831							
114	114	45	0.7	Uniform	Uniform	Two point	0.748	3.868
26	115	45	0.7	Feasible por	oulation	Uniform	Scattered	0.7312
3.8854								
109	116	10	0.7	Uniform	Uniform	Two point	0.6886	4.0832
126	117	45	0.7	Feasible por	oulation	Uniform	Two point	0.7334
3 8668				r custore por		2	Point	
105	118	20	0.4	Uniform	Uniform	Two point	0 7386	3 8882
105	110	20	0.7	Children	omoni	1 wo point	0.7500	5.0002

		Vil	kas Kumar & Dr	<u>. Ashwani Ku</u>	<u>mar Dhingra</u>			311
72 3 8958	119	45	0.3	Feasible pop	oulation	Uniform	Single point	0.7176
144 0.7496	120 3.8406	20	0.4	Feasible pop	oulation	Adaptive fea	sible	Two point
90 3 8378	121	45	0.7	Uniform	Adaptive fea	sible	Single point	0.7452
36	122	45	0.7	Uniform	Adaptive fea	sible	Scattered	0.746
110	123	80	0.7	Uniform	Uniform	Two point	0 7363	3 8726
31	124	10	0.7	Uniform	Adaptive fea	sible	Scattered	0.715
3.96					Ĩ			
12	125	45	0.7	Uniform	Uniform	Scattered	0.7242	3.8571
32 3 841	126	80	0.7	Uniform	Adaptive fea	sible	Scattered	0.7452
137 3.8388	127	45	0.3	Uniform	Adaptive fea	sible	Two point	0.7458
49 0 746	128 3 837	45	0.7	Feasible pop	oulation	Adaptive fea	sible	Scattered
148	129	10	0.7	Feasible pop	oulation	Adaptive fea	sible	Two point
38	130	45	0.7	Uniform	Adaptive fea	sible	Scattered	0.746
21 3 893	131	45	1.0	Feasible pop	oulation	Uniform	Scattered	0.7142
39 3 8382	132	45	0.7	Uniform	Adaptive fea	sible	Scattered	0.746
11	133	45	0.7	Uniform	Uniform	Scattered	0.726	3.8842
44	134	10	0.7	Feasible pop	oulation	Adaptive fea	sible	Scattered
0.7296	3.9048							
80 3.837	135	70	0.4	Uniform	Adaptive fea	sible	Single point	0.746
152 0.7496	136 3.8478	45	0.7	Feasible pop	oulation	Adaptive fea	sible	Two point
99 0.746	137 3.838	45	1.0	Feasible pop	oulation	Adaptive fea	sible	Single point
34 3 8182	138	45	1.0	Uniform	Adaptive fea	sible	Scattered	0.7138
136 3 8403	139	80	0.7	Uniform	Adaptive fea	sible	Two point	0.7477
146	140	20	0.9	Feasible pop	oulation	Adaptive fea	sible	Two point
43 0.7426	141 3.8434	70	0.9	Feasible pop	oulation	Adaptive fea	sible	Scattered
54	142	70	0.4	Uniform	Uniform	Single point	0.7278	3.8792
93	143	70	0.4	Feasible pop	oulation	Adaptive fea	sible	Single point
0.746	3.838							
123 3 8612	144	80	0.7	Feasible pop	oulation	Uniform	Two point	0.7398
84 3 8402	145	80	0.7	Uniform	Adaptive fea	sible	Single point	0.7447
56	146	70	0.9	Uniform	Uniform	Single point	0.7294	3.8898
133	147	20	0.9	Uniform	Adaptive fea	sible	Two point	0.7466
3.8548	1.40	-	o (F	1		a	0.720
15 3.856	148	70	0.4	Feasible pop	oulation	Uniform	Scattered	0.738
45 0.7451	149 3.8404	80	0.7	Feasible pop	oulation	Adaptive fea	sible	Scattered
3	150	20	0.9	Uniform	Uniform	Scattered	0.69	3.91
58	151	80	0.7	Uniform	Uniform	Single point	0.729	3.8718

Genetic Algor	ithm Paramete	ers Optimizati	on For Electro	ochemical Ma	chining Using	g Response Su	irface	
Methodology								312
79	152	20	0.4	Uniform	Adaptive fea	sible	Single point	0.7422
3.865								
129	153	45	0.7	Feasible pop	ulation	Uniform	Two point	0.7314
3.8696								
88	154	45	0.7	Uniform	Adaptive fea	sible	Single point	0.746
3.837								
119	155	70	0.4	Feasible pop	ulation	Uniform	Two point	0.731
3.872								
62	156	45	0.7	Uniform	Uniform	Single point	0.734	3.94

3. RESULT AND DISCUSSIONS

In this work optimization of parameters of multi-objective genetic algorithm for maximizing the MRR and minimize the SR in ECM machine like population size, crossover, mutation, creation function etc. 5 level Central Composite Design (CCD) of Response Surface Methodology (RSM) of Design Expert software have been considered for optimizing the different multi-objective GA constraints for maximizing the Material Removal Rate(MRR) and minimizing Surface roughness of ECM machine. Table 2 shows the parameters of GA with their range and levels ,which are taken into consideration in this work. 156 experiments have been provided by the design expert through the combination of various parameters which are to be performed for the optimization. Each combinational set is run five times and the average of these taken as the final result. Hence total 156*5=780 outcomes were used for the optimization of GA constraints. Design summary is shown below in table 3. In which 2 factors (A and B) are numeric and other 3 factors (C, D and E) are definite.

Table 2: Genetic Algorithm Parameters With Range And Levels

S no.	Parameters	Range
1	Population size (A)	20 – 70 (5 Levels)
2	Crossover fraction(B)	0.4 - 0.9 (5 Levels)
3	Creation function(C)	Level 1(Uniform),Level 2(Feasible population)
4	Mutation function(D)	Level 1(Uniform),Level 2(Adaptive feasible)
5	Crossover function(E)	Level 1(Scattered), Level 2(Single point), Level 3(Double point)

Table 3: Design Review

Type of stu	dy	Response S	urface		Experiments		156		
Initial Desig	gn	Central Cor	nposite		Blocks	No Blocks			
Design Moo	del	Quadratic							
Response	Name	Units	Obs	Minimum	Maximum		Model		
Y1	MRR	g	156	0.67	0.75		Quadratic		
Y2	SR	micrometer	156	3.80	4.10		Quadratic		
Factor	Name	Units	Туре	Low Actual	High Actua	l Low Coded	High Coded	l	
А	Population s	size		Numeric	20.00	70.00	-1.000	1.000	
В	Crossover I	Fraction	Numeric	0.40	0.90	-1.000	1.000		
С	Creation fur	nction	Categorical	Uniform	Feasible pop	oulation	Levels:	2	
D	Mutation fu	nction	Categorical	Uniform	Adaptive fea	asible		Levels:	2
Е	Crossover fi	unction	Categorical	Scattered	Two point		Levels:	3	

A. ANOVA for the Response Surface Quadratic Model

ANOVA test have been conducted for the optimisation of the MRR and SR as shown in table 4 and 5. The model used for optimizing process parameters of GA is quadratic in nature. The F-test and probability test have been performed for checking the significance. The F-ratio is the fraction between groups means square values to within group mean square values. The P-values have been compared with each coefficient to check its significance. If P- value is less than 0.05 for a planned model, then it is significant at the 5% level of significance. It is to be noted that Lack of fit is not significant in both cases.

Source F	Sum of Squares	De fr	gree of eedom	Mean Square	F Valı	ie Prob >
Model	035	22	1.604 x10 ⁻⁰⁰³	13.69	< 0.0001	significant
A 9.069x10)-003	1	9.069 x10 ⁻⁰⁰³	77.38	< 0.0001	C
B1.795 x10	0^{-003}	1	1.795 x10 ⁻⁰⁰³	15.32	0.0001	
C9.901 x10	D ⁻⁰⁰⁸	1	9.901 x10 ⁻⁰⁰⁸	8.448 x10 ⁻⁰⁰⁴	0.9769	
D (0.014		1	0.014	121.89	< 0.0001
E1.395 x10	0^{-003}	2	6.974 x10 ⁻⁰⁰⁴	5.95	0.0033	
A ² 4.714 x10) ⁻⁰⁰³	1	4.714 x10 ⁻⁰⁰³	40.23	< 0.0001	
B ² 3.333 x10) ⁻⁰⁰⁴	1	3.333 x10 ⁻⁰⁰⁴	2.84	0.0941	
AB4.951 x10)-005	1	4.951 x10 ⁻⁰⁰⁵	0.42	0.5168	
AC4.175 x10	D ⁻⁰⁰⁴	1	4.175 x10 ⁻⁰⁰⁴	3.56	0.0613	
AD1.382 x10	D ⁻⁰⁰³	1	$1.382 \text{ x} 10^{-003}$	11.80	0.0008	
AE1.043 x10	D ⁻⁰⁰⁵	2	5.216 x10 ⁻⁰⁰⁶	0.045	0.9565	
BC4.436 x10	D ⁻⁰⁰⁷	1	4.436 x10 ⁻⁰⁰⁷	3.785 x10 ⁻⁰⁰³	0.9510	
BD2.387 x10	D ⁻⁰⁰⁷	1	2.387 x10 ⁻⁰⁰⁷	2.036 x10 ⁻⁰⁰³	0.9641	
BE7.797 x10	0^{-004}	2	$3.898 \text{ x} 10^{-004}$	3.33	0.0389	
CD7.387 x10	D ⁻⁰⁰⁵	1	7.387×10^{-005}	0.63	0.4286	
CE2.498 x10	D ⁻⁰⁰⁴	2	$1.249 \text{ x} 10^{-004}$	1.07	0.3475	
DE9.799 x10	0^{-004}	2	$4.899 \text{ x}10^{-004}$	4.18	0.0173	
Residual 0.0	016	133	$1.172 \text{ x} 10^{-004}$			
Lack of Fit 0.	011	85	$1.300 \text{ x} 10^{-004}$	1.38	0.1146	not significant
Pure Error4.534 x	10-003	48	9.446 x10 ⁻⁰⁰⁵			
Cor Total 0.0	051	155				

F-value of 13.69 of this model mean that the model is significant and there is only a 0.01% chance that a "Model F-Value" this large could occur due to noise. Values of "Prob > F" is less than 0.0500 specify model terms are considerablely. A, B, D, E, A², AD, BE, DE are significant model expressions. Values greater than 0.1000 specify that the model provisions are not significant.

Table 5: Anova For Response Surface Quadratic Model Of Sr

Source	Sum of Squares	Degree of freedom	I	Mean Square	F Value	
Prob > F	•					
Model	0.26	22	0.012	10.82	< 0.0001	significant
А	0.12	1	0.12	107.74	< 0.0001	C
В	1.432 x10 ⁻⁰⁰⁴	1	1.432 x10 ⁻⁰⁰⁴	0.13	0.7197	
С	$6.972 \text{ x}10^{-004}$	1	6.972 x10 ⁻⁰⁰⁴	0.63	0.4290	
D	0.073	1	0.073	65.57	< 0.0001	
E	2.071 x10 ⁻⁰⁰³	2	1.036 x10 ⁻⁰⁰³	0.93	0.3952	
A ²	0.047	1	0.047	42.60	< 0.0001	
в2	1.741 x10 ⁻⁰⁰⁵	1	1.741 x10 ⁻⁰⁰⁵	0.016	0.9004	
AB	2.715 x10 ⁻⁰⁰³	1	2.715 x10 ⁻⁰⁰³	2.45	0.1198	
AC	1.723 x10 ⁻⁰⁰⁴	1	1.723 x10 ⁻⁰⁰⁴	0.16	0.6939	
AD	$6.082 \text{ x} 10^{-003}$	1	6.082 x10 ⁻⁰⁰³	5.49	0.0206	
AE	1.494 x10 ⁻⁰⁰³	2	7.470 x10 ⁻⁰⁰⁴	0.67	0.5112	
BC	2.536 x10 ⁻⁰⁰⁴	1	2.536 x10 ⁻⁰⁰⁴	0.23	0.6331	
BD	1.148 x10 ⁻⁰⁰⁴	1	1.148 x10 ⁻⁰⁰⁴	0.10	0.7480	

Genetic Algorithm Parameters	Optimization For Electrochemical	Machining Using Response Surface
6		

<u>Methodology</u>						314
BE	$1.766 \text{ x} 10^{-003}$	2	$8.832 \text{ x}10^{-004}$	0.80	0.4527	
CD	8.252 x10 ⁻⁰⁰⁴	1	$8.252 \text{ x}10^{-004}$	0.75	0.3896	
CE	6.124 x10 ⁻⁰⁰³	2	$3.062 \text{ x} 10^{-003}$	2.76	0.0666	
DE	1.556 x10 ⁻⁰⁰³	2	$7.782 \text{ x}10^{-004}$	0.70	0.4971	
Residual	0.15		133	$1.108 \text{ x} 10^{-003}$		
Lack of Fit	0.096	85	$1.124 \text{ x} 10^{-003}$	1.04	0.4467	not
significant						
Pure Error	0.052	48	$1.079 \text{ x} 10^{-003}$			
Cor Total	0.41		155			

The Model F-value of 10.82 implies the model is significant. A, D, A², AD are significant model terms.

B. Optimum GA Parameters Predicted by RSM

Optimum parameters have been obtained using Central Composite Design (CCD) of Response Surface Methodology (RSM) of Design Expert software. Total of 156 experiments have been carried out for the optimisation of the MRR and SR simultaneously for ECM machine. Criteria for optimization and Optimum parameter selection for MRR and SR have been shown in table 6 and table 7. Through the various experiments the optimum parameters have been found to be population size: 59, Crossover Fraction: 0.4, creation function: Feasible population, mutation: Adaptive feasible, creation function: Two point and selection: tournament.

Table 6: Criteria For Optimization

Name	Goal	Lower	Upper	Importance	
Population size	e is in range	20	70	3	
Crossover Fra	ction is in range	0.4	0.9	3	
Creation funct	ion is in range	Uniform	Feasible population		3
Mutation funct	tion is in range	Uniform	Adaptive feasible	3	
Crossover fund	ction is in range	Scattered	Two point	3	
MRR	maximize	0.6708	0.7542	3	
SR	minimize	3.7984	4.1	3	

Table 7: Optimum Parameter Selection For MRR And SR

NO.	Populatio	n Crossover Creation M	utation	Crossover	MRR	SR		Desirability
	size	Fraction function	function	function	1			
1	59	0.4 Feasible p. Ada	ptive feasible T	wo point 0).749454	3.81884	0.938	Selected
2	66	0.4 Feasible p. Ada	ptive feasible So	cattered	0.7542	3.83659	0.935	
3	58	0.4Uniform Adaptive	feasibleScattered	10.750998	3.82765	0.932		
4	57	0.4Uniform Adaptive	feasibleScattered	10.751071	3.82792	0.932		
5	57	0.4Uniform Adaptive	feasibleScattered	10.751121	3.82812	0.932		
6	55	0.4Uniform Adaptive	feasible Two po	oint0.75164	3.83767	0.918		
7	59	0.5 Feasible p. Ada	ptive feasible S	Single point ().746955	3.82579	0.911	
8	54	0.6Uniform Adaptive	feasible Single	point0.74844	23.83572	0.903		
9	54	0.6Uniform Adaptive	feasible Single	point0.74843	383.83571	0.903		
10	70	0.4 Feasible p.Unifor	m Two p	oint0.741799	9 3.8443	0.850		

4. CONCLUSION

In this research paper, parametric optimisation for Genetic Algorithm for the maximization of the MRR and minimization of the SR have been done. The efficiency and effectiveness of GA is primarily depends on its various parameters like population size, crossover fraction, creation function, mutation, crossover function etc. For the optimization of these GA parameters a 5 level numeric factor Central Composite Design (CCD) of Response surface methodology (RSM). Total 156 experiments are performed by varying its various GA parameters in MATLAB environment for the optimal result. The optimum values for maximizing the MRR and minimizing the SR simultaneously are Population size: 59, Crossover Fraction: 0.4, Creation function: Feasible population, Mutation: Adaptive feasible, Creation function: Two point.

5. REFERENCES

- [1] https://en.wikipedia.org/wiki/Electrochemical_machining.
- B. Bhattacharyya, M. Malapati, J. Munda, 2005. "Experimental study on electrochemical micromachining", Journal of Materials Processing Technology 169 (2005) 485–49
- [3] N. K. Jain & V. K. Jain, 2007. "Optimization of electro chemical machining process parameters using Genetic Algorithms", Machining Science and Technology ISSN: 1091-0344 (Print) 1532-2483
- [4] D. Datta and A.k. Das, 2010."Tuning process parameters of Electrochemical machining using a Multi-objective Genetic algorithm", Springer-Verlag Berlin Heidelberg 2010 LNCS 6457, pp. 485–493,
- [5] C. Senthilkumar, G. Ganesan, R.K., 2012."Optimization of ECM process parameters using NSGA-II", Journal of Minerals and Materials Characterization and Engineering, 2012, 11, 931-937
- B.R. Acharya, C.P. Mohanty, S.S. Mahapatra ,2013. "Multi-objective optimization of electrochemical machining of hardened steel using NSGA-II", Proceedia Engineering 51 (2013) 554 – 560
- [7] A Giribabu, S. R. Rao and G Padmanbhan, 2014."Optimization of machining parameters in ECM of Al/B4C Composites using Genetic algorithms", IJMERR, July 2014
- [8] M. Sankar, A. Gnanavelbabu and R.Baskaran, 2014. "Optimization of surface roughness in Electro chemical machining," Trans Tech Publications, Switzerland Applied Mechanics and Materials Vol. 606 pp 193-197
- [9] V. Sathiyamoorthy, T. Sekar, and N. Elango, 2015."Optimization of process parameters in ECM of die tool steel using nanofluid by Multi-objective Genetic algorithm", Hindawi Publishing Corporation, The Scientific World Journal Volume 2015, Article ID 895696
- [10] Abhishek, A. Mandal, Kaushik, 2015. "Multi-objective optimization of Electro-chemical machining by non-dominated sorting Genetic algorithm", Materials Today: Proceedings 2 (2015) 2569 – 2575
- [11] http://novelmech.com/2016/05/electrochemical-machining.html.
- [12] http://novelmech.com/2016/05/electrochemical-machining.html.